(https://www.arduino.cc)

SIGN IN () HOME (//WWW.ARDUINO.CC) STORE (//STORE.

Arduino as ISP and Arduino Bootloaders

What makes an Arduino what it is? Many things, but one of the most important ones is the way
every Arduino board is easily programmed with the Arduino Software (IDE). It is enough to
connect it to the computer USB port and press the “Upload” icon to start a process that
transfers your sketch into the Flash memory of the microcontroller.

- The Bootloader
- UseArduino as ISP
- How to wire your boards
- About voltages
- Load the sketch
- Program the bootloader
- The Serial Programming Mode
- Technical aspects of programming
- Recap: burn the Bootloader in 8 steps

- See also

The Bootloader

The behaviour described above happens thanks to a special piece of code that is executed at
every reset of the microcontroller and that looks for a sketch to be uploaded from the
serial/USB port using a specific protocol and speed. If no connection is detected, the execution is
passed to the code of your sketch.

This little (usually 512 bytes) piece of code is called the “Bootloader” and it is in an area of the
memory of the microcontroller — at the end of the address space - that can't be reprogrammed
as a regular sketch and had been designed for such purpose.

Program Memory Data Memory EEPROM

16-bits . &-hits . . B-hits

32 General
Purpose
Flash Registers

16K x 16

EEFROM

e41/0 512 x 8
Registers

Application Flash Section

160 I/O Ext
Registers

SRAM
2048 x 8

Boot Flash Section

The Memory Map of an ATmega328P

To program the bootloader and provide to the microcontroller the compatibility with the
Arduino Software (IDE) you need to use an In-circuit Serial Programmer (ISP) that is the device
that connects to a specific set of pins of the microcontroller to perform the programming of the
whole flash memory of the microcontroller, bootloader included. The ISP programming
procedure also includes the writing of fuses: a special set of bits that define how the
microcontroller works under specific circumstances.

Use Arduino as ISP

The whole process of loading the bootloader code and burning properly the fuses to make an
ATmega microcontroller an “Arduino” is managed by the Arduino Software (IDE): it provides a
specific menu item and allows you to use a variety of programming devices. Among the
programmers, the “Arduino as ISP” is the cheapest and most practical solution to burn a
bootloader on another Arduino board with ATmega, 32U4 or ATtiny.

lE! Help

Auto Format Ctrl+T
Archive Sketch
Fix Encoding & Reload

" Serial Monitor Ctrl+5hift+M
Serial Plotter Ctrl+Shift+.

WiFi101 Firmware Updater

Board: "Arduino Nano™ 3N
Processar: "ATmega32aP” b o
Part ¥

Get Board Info Ex, octal and binary

Programmer: "Arduino as ISP" Atmel EDEG
Burn Bootloader | Atmel-ICE
Atmel SAM-ICE
zircuit: No external hard awgisp
AVRISP mkIl
. USBtinyISP
g s s g gyl ACIEROISE
) o] ArduinoISP.org
|ISBasp
Parallel Programmer

& Arduino as ISP

example code 1s in the Arduino Gemma
BusFirate as ISP
. - - Atmel STKS00 development board
E T Atmel TTAGICE3 (ISP mode)
Atmel JTAGICE3 (JTAG mode)
Atmel-ICE (AVR)

Micronudeus

The programming process uses VCC, GND and four data pins. Three pins connect MISO, MOSI and
SCK between the programming micro and the target micro, the fourth pin from the
programming micro goes to the reset pin of the target.

How to wire your boards

The following table display on which pins the MOSI, MISO and SCK are broken out on the
different Arduino boards:

Arduino / Genuino Board MOSI MISO SCK Level
Uno or Duemilanove 1T or ICSP-4 12 or ICSP-1 13 or ICSP-3 5V
Megal280 or Mega2560 51 orICSP-4 50 or ICSP-1 52 or ICSP-3 5V
Leonardo ICSP-4 ICSP-1 ICSP-3 5V
Due ICSP-4 ICSP-1 ICSP-3 3,3V
Zero ICSP-4 ICSP-1 ICSP-3 3,3V
101 M or ICSP-4 12 or ICSP-1 13 or ICSP-3 3,3V
MKR Family 8 10 9 3,3V

The SPI interface - and therefore these pins - is the interface used to program the AVR
microcontrollers. Note that MISO, MOSI, and SCK are available in a consistent physical location
on the ICSP header; this connector is used also by shields that rely on the SPI interface allowing

the design of shields that work on every board.

1-MISO @ @) 2- +Vee

3-SCK @e 4-MOSI

5-Reset (@ ® 6 - Gnd
ICSP

On the Arduino UNO in the following image, we have highlighted in red the connections on the
female strips; in yellow the ICSP connector that connects to the ATmega328P. Please note that
the Rev.3 board has an ATMega 16U2 chip that manages the USB connection and also that chip
can be reprogrammed via a dedicated connector labeled ICSP2, just above the ATMega 16U2
itself.

M~ a0 . x m
LI ¢ %

-
'y
(=]
>
o

DIGITAL (PWM=~)

(//www.arduino.cc/en/uploads/Tutorial/Uno_Connect.jpg)

On some Arduino boards (see table above), pins MOSI, MISO and SCK are the same pins as digital
pin 11,12 and 13, respectively. That is why many tutorials instruct you to hook up the target to
these pins. If you find this wiring more practical, have a define USE_OLD_STYLE_WIRING. This
will work even when not using an Uno. (With the Uno board this is not needed).

DIGITAL (PWM=~)

DIGITAL (PWM: -

rx@® Arduino’

(//www.arduino.cc/en/uploads/Tutorial/ArduinoUNOtoUNO_ISP2,jpg)

In the picture above we are connecting two UNO boards for bootloader burning with the "old
style" connections: the top board is the Target, the bottom board is the Programmer. Note the
yellow connection from D10 of the programmer to RESET of the target. On MKR family of boards,
you can't use D10 for reset; we suggest D6 and you must remember to change the line 73 of the
ArduinolSP sketch - #define RESET 10 - putting"6"insteat of 10.

DIGITAL (PuN=~)

rxmm Arduino”

PROGRAMMER

(//WWW.arduino.cc/en/LjpIoads/TutoriaI/Arduino_ISP_Wires.jpg)

This Arduino NANO is programmed through its ICSP connector with wires coming from D10-D13
of the programmer UNO board.

1

ANALOG IN

mmmmmmmmmmmmmmmmmm
aaaaaaaaaaaaaa

xxxxxxxx
mmmmmmmm

TX .
RX

PROGRAMMER

ggggg

mmmmmm
aaaaaaaaaaaaaaaaaaa
SERBEEEY T <<zT<osx =T <T<c=zao

(//www.arduino.cc/en/uploads/Tutorial/MegaToUNO.jpg)

The Arduino MEGA above is programming an Arduino UNO connecting D51-D11, D50-D12, D52-
D13, GND-GND, 5V-5V and D10 to RESET. This type of board needs a 10pF electrolytic capacitor
connected to RESET and GND with the positive (long leg) connected to RESET. The capacitor has
to be placed after the programmer board has been loaded with the ISP sketch.

The 10uF electrolytic capacitor connected to RESET and GND of the programming board is
needed only for the boards that have an interface between the microcontroller and the
computer's USB, like Mega, Uno, Mini, Nano. Boards like Leonardo, Esplora and Micro, with the
USB directly managed by the microcontroller, don't need the capacitor.

About voltages

The Arduino family of boards includes 5V and 3.3V devices. When using an Arduino that is not 5V
tolerant (Due, Zero, ...) as the programmer, make sure to not expose any of the programmer's
pins to 5V. A simple way to accomplish this is to power the complete system (programmer and
target) at 3V3.

! ™ ARDUINO.CC

m Xy

>
]
Q
<
[
=
(J#

(//www.arduino.cc/en/uploads/Tutorial/MKR100O_ISP_UNO_2jpg)

In the above picture you see the wiring between a MKR1000 and a UNO. As described above,
everything runs on 3.3V, taken from VCC and GND of the MKR1000 and sent to 5V and GND of
the UNO. The same connection could be made to the ICSP of the UNO following the pinout
explained in the page. We have used the same colors for the wires as in the other pictures to
help you switch from the "old wiring" to the ICSP connector with ease. Please note that the MKR
family of boards share the same pinout, therefore you can use any MKR board as ISP
programmer. If you use a MKR board as ISP programmer, remember to change the line 73 of the
ArduinolSP defining the actual pin used on the MKR board to Reset the target (6 in the picture
above).

Note: Please do not connect to USB or power supply the boards while you set up the
connections and wires. We also suggest that you first program the Arduino used as ISP
programmer before you proceed with the wiring to the target board.

Load the sketch

The Arduino that you will use as programmer needs a specific sketch. You find it under Examples
> 11. ArduinolSP > ArduinolSP .

&8 ArduinolSP | Arduino 1.8.5
5= Edit Sketch Tools Help

Mew Ctrl+
Cpen..., Ctrl+0
Open Recent]
Sketchboolk: k| ——— b
Ex; es [
o— il
Close Cirl+w idall Bohn
| 03.Analog b
i i _ 04, Communication r b
Save As... Ctrl+5hift+5 | 05.Control b icenses/bs:
Page Setup Ctri+Shift+P 0&.5ensors b
Print Ctrl+P 07.Display P no into a i
08.5trings k
Preferences Ctrl+Comma
09.UsB] i
_) target mi
Quit Ctrl4+Q 10, 5tarterkit_Basickit Ly
A 11 ArduinoIsP ¥ ArduinoISP
10 // By defau I pins MISt

Going through the lines of the sketch you find a number of parameters that need to be set
according to the target board. These parameters are, however, set by a specific file available for
each bootloader/board supported by the Arduino Software (IDE). Other parameters are clearly
explained by the comments and should be changed only if you know what you are doing. The
sketch also supports three LEDs that give you a visual feedback about the programming process.

%

. Heartbeat

—

. Error

>
3
Q
=
i
3
04

%

. Programming

. XY
|l
s o000 essess s oo =PI o

o o =TI = o

(//www.arduino.cc/en/uploads/Tutorial /Arduino_ISP_LEDSOK jpg)

To upload the sketch to your Arduino board - the one that you will use as the programmer -
you need to select board type and port, then you can proceed as usual.

Program the bootloader

If all the wires are set, you need to switch to the board type you want to program with the
bootloader. This step is mandatory to select the proper bootloader code and the fuses
configurations. The programming procedure checks the signature of the microcontroller before
any writing action is taken, but many boards share the same microcontroller and each board has
its own bootloader. The port remains the one of the ArduinolSP.

Choose “Burn bootloader” under tools and wait for the confirmation message in the lower part
of the Arduino Software (IDE) interface. If you connected the LEDs you may follow the process
visually.

Arduinol5P | Arduino 1.8.5

File Edit Sketch BLGIEE Help
; .ﬁ.ub:.:.F-Drrnat. Ctrl+:l'-

Archive Sketch
ArduinolSP § Fix Encoding & Reload

Serial Monitor Ctrl+Shift-+M
19 // 419 serial Plotter Ctrl+shifts £
i YO \Wik101 Frmware Updater i
21// pral T
22 |4/ usj_; Board: "Arduino Mano® 21
23 7/ Processor: “ATmega32ar”]

_ | Port b

24 // BLb Get Board Info n
2510/ Bed a
26 // PI Programmer: “Arduino as ISP* k|
27 EF

The Serial Programming Mode

The programming process manages the three SPI lines (MISO, MOSI and SCK) according to the
standard SPI programming protocol, the same used to read and write SD memory cards. The
only difference with memory cards is the lack of a CS (Chip select) pin. On our AVR
microcontrollers we use the RESET pin that halts the execution of any sketch or bootloader and
puts the microcontroller in a specific state where it listens to the commands arriving from the
SPI interface. The very first command that the protocol requires is the one that enters the
microcontroller in the Serial Programming Mode.

Once this specific mode is active, we can write and read all the microcontroller programmable
areas: Flash, EEPROM and Fuses. At the end of the Flash memory, we have the bootloader code
area, as highlighted in the image at the beginning of this article. The "Burn Bootloader"
procedure also sets properly the fuses of the microcontroller according to the design of the
board. This is one of the reasons why you have to burn the bootloader selecting your exact
board model in the list.

Technical aspects of programming

The open source software tool used to program the microcontroller is avrdude
(http://www.nongnu.org/avrdude/). The process goes through four steps: unlocking the
bootloader section of the chip, setting the fuses on the chip, uploading the bootloader code to
the chip, locking back the bootloader section of the chip.

The fuses are managed according to the preferences stored into each parameter file associated
with the board, avoiding potential mistakes.

The management of fuses, usually a set of three bytes — low, high and extended -, is the most
delicate aspect of the bootloader programming: a wrong fuse setting could brick the
microcontroller and the board. Fuses define many aspects of the microcontroller’s functions like:
selecting different clock sources and change how fast the chip runs, setting the minimum
voltage required before the chip works (brownout), setting whether or not a bootloader is used,
setting how much memory is allocated to the boot loader (from 256 to 2048 words - 512 to
4096 bytes), disabling reset or serial programming and stop EEPROM data being erased when
uploading a new sketch.

Detailed description of the fuses can be found on the datasheet of each microcontroller.

Every setting has its own usage and it is logical to allow the developer to lock the chip and
protect it from ISP programming, but it might happen to mistakenly set a fuse in the wrong way,
locking you out of the programming process through the ISP interface. To recover the
microcontroller, you have to rely on a High Voltage Serial Programmer that uses 12V to reset the
fuses.

Recap: burn the Bootloader in 8 steps

- Open the ArduinolSP firmware (in Examples) to your Arduino board.

- Note for Arduino 1.0: you need to make one small change to the ArduinolSP code. Find the
line in the heartbeat() function that says "delay(40);" and change it to "delay(20);".

- Select the items in the Tools > Board and Serial Port menus that correspond to the board
you are using as the programmer (not the board being programmed).

- Upload the ArduinolSP sketch.

- Wire your Arduino boards..

- Select the item in the Tools > Board menu that corresponds to the board on which you want
to burn the bootloader (not the board that you're using as the programmer). See the board

descriptions on the environment page for details.
- Select the Arduino as ISP in the Tools>Programmer menu.

- Use the Burn Bootloader command.

See also

- Going from Arduino to an ATmega on a breadboard
(//www.arduino.cc/en/Tutorial/ArduinoToBreadboard)

- Arduino-compatible circuit on a breadboard (//www.arduino.cc/en/Main/Standalone)

Last revision: 2018/01/20 by SM

