
David Hannaford - MINOS 2010 Slide 1

Tuning Flood algorithms

Making them 10 times faster than last year!

TomTom

Recap on MINOS 2009

• Last year Pete and I explored ways
of making the flood algorithm very
efficient so as to get the CPU time
down to a few milliseconds

• This involved creating a list which
held pointers to the cells as we
flooded them out from the centre

David Hannaford - MINOS 2010 Slide 2

David Hannaford - MINOS 2010 Slide 3

A refresher on the flood algorithm

•  Set all cells to maximum
flood distance and middle
square(s) =0. Start at centre

•  Find all squares adjacent to
ones just filled in & not
blocked by walls. Fill them in
with adjacent square value +
distance, if lower than
existing.

•  Repeat previous step until at
start

Set all cells to maximum
flood distance and middle
square(s) =0. Start at centre

12  12 12

12 00 12

12 12 12

12  12 12

Find all squares adjacent to
ones just filled in & not
blocked by walls. Fill them in
with adjacent square value +
distance, if lower than
existing.

 01

 01

02 02

02 02

03 03

03 03 04 Repeat previous step until at
start

A

B

C

D

1 2 3

David Hannaford - MINOS 2010 Slide 4

Using the pointer list

•  Which makes more sense if
shown as a tree structure:

12  12 12

12 00 12

12 12 12

12  12 12

 01

 01

02 02

02 02

03 03

03 03 04 A

B

C

D

1 2 3

C2,
B2, D2,
B1, B3, D1,D3,
A1,C1, A3,C3
 A4

00
01
02
03
04

C2, B2,D2, B1,B3,D1,D3, A1,C1,A3,C3, A4

•  The pointer list looks like :

David Hannaford - MINOS 2010 Slide 5

How to cross the maze using the
flood info

•  Set up at start & pointing North
•  Get flood no from current cell
•  Look for lowest flood no in

adjacent cells you can get to.
•  If several equal, choose the one

in same direction as going now
and save as the next cell to go to

•  Make this one the new current
cell and loop round from step 2
until until at end cell (middle
square if going to centre)

00

 01

 01

02 02

02 02

03 03

03 03 04

So why update this algorithm?

•  It used 1 byte cell pointers, so couldn’t
handle a 32x32 maze or flooding where the
“flood distance” between cells was other
than 1 – This stops us taking account of
the longer time for corners or the shorter
time for diagonals while flooding

•  I wanted to get the flood time down below
a millisecond

•  I really felt that we were missing a trick or
two (or three)

David Hannaford - MINOS 2010 Slide 6

David Hannaford - MINOS 2010 Slide 7

When did I run the flood?
•  While exploring, every time the

mouse enters a new cell it checked
for walls either side and ahead, then
recorded these in the maze array and
recalculated the full flood route

•  Need to complete this before mouse
needs to decide whether going ahead
or turning left or right in new cell

•  This means the mouse only explores
the potentially best routes, so it
should minimise the explore time

An interesting fact

•  When you re-flood a maze (e.g. after seeing a
new wall) the flood value of EVERY cell in the
maze can only be the same or higher. It can
never be lower.

•  Why? – Well if could be lower you could have got
to this cell by the same route before you saw the
new wall, which cannot be true.

•  So what !! – Well it turns out that you can use
this fact to significant advantage as you will see
in the next few slides

David Hannaford - MINOS 2009 Slide no 8

David Hannaford - MINOS 2010 Slide 9

Do you always need to re-flood?

•  So if you have visited this cell before
you don’t need to re-flood

•  If you don’t see any new walls in a new
cell you don’t need to re-flood

•  If the only new walls seen are between
the current cell and ones that have a
higher flood number than the current
cell then you don’t need to re-flood, as
it can only make them the same or a
higher no - e.g. 03 to 03 or 03 to 05

Only if you go into a cell and discover new
walls on the optimum flood route

 03

 03

04 02

00 04

03 01

01 05 02

02

David Hannaford - MINOS 2010 Slide 10

How much time do we save?
By detecting that we don’t need to re-flood:
The % times we don’t need to flood depends on how

often we find a wall that blocks the optimum route
The maths:
Every post must have at least 1 wall so a 16 x16 cell

maze must have 17x17 posts, so at least 289 walls
Min % that wall blocks route =¼ x 289/256 =28%
Every cell must have 1 missing wall to get into it, so

max % that wall blocks route is ¾ x 289/256 =85%
Mean probability is ½ x 289/256 = 56%
So 44% of the time we don’t need to re-flood at all

00

 01

 01

02 02

02 02

12 12

12 12 12

David Hannaford - MINOS 2010 Slide 11

Do you need to re-flood
the whole maze?

•  If you are exploring, and only
use the flood numbers to move
to the next lowest flood
number towards the centre,
then when the flood reaches
the cell the mouse is going into
you can stop. In this case
shown, on only the second cell
we only have to flood 7 from
12 cells (approx 60%) and as
we get nearer the centre this
% reduces even more

David Hannaford - MINOS 2010 Slide 12

Do we even need to always
flood from the centre?

No, but where do you need to re-flood from?

My new rules
Get current cell flood
no = 02
Then adjacent one
with lowest no = 01
Clear all cells with
current flood no and
above – set a high
number in them =12

 12

 12

12 02

00 12

12 01

01 12 02

02

New wall seen here

 12

 12

12 12

00 12

12 01

01 12 12

12

}

David Hannaford - MINOS 2010 Slide 13

We re-flood from the lowest
adjacent cell flood number

Lowest adjacent
flood no is 01
Re-flood out from
cells with 01 in
them to the current
mouse cell
Only 4 cells re-
flooded in this case

 03

 12

04 02

00 12

12 01

01 12 02

04

 12

 12

12 12

00 12

12 01

01 12 12

12 }

David Hannaford - MINOS 2010 Slide 14

How do we get to the right cells
to re-flood from?

We go back to the pointer list

 03

 12

04 02

00 12

12 01

01 12 02

04

A

B

C

D

1 2 3 00 B3, *
01 A3,C3 *
02 A2, C2, D3 *

If we add a marker * in the list every time
the flood number changes we just need to
go back to the relevant * in the list and
restart from there. Note: The marker also
holds the flood no for that mini list,

02 A2, D3 *
03 D2 *
04 C2, D1 *

David Hannaford - MINOS 2010 Slide 15

Does this still work with variable
distance flooding?

Rework the flood where:
Straight ahead =2 units, Round a corner =3
•  Need new highest possible no (36)
•  Pointer list is:
•  00 B3 *
•  02 A3,C3 *
•  05/04 A2, C2, D3 *
Can we be sure about D2 not being better?

Only if we flood the D3 cell to give D2 as
07

The rule is you have to keep flooding until all
the pointer cells flood values equal or
exceed the current mouse cell flood value

 36

 36

36 04

00 36

36 02

02 36 05

05

A

B

C

D

1 2 3

Note that with variable distance flooding you also need some extra flags in each cell
to say which direction you are heading, to detect when you are going round corners.

David Hannaford - MINOS 2010 Slide 16

Re-flood after seeing new wall?
Rework the flood where:
Straight ahead =2 units, Round a corner =3
•  Lowest adjacent flood no to current is 02
•  So re-flood from 02 cells
•  Pointer list was:
•  00 B3 *
•  02 A3,C3 *
•  05/04 A2, C2, D3 *
•  07 D2 *
•  Re-flood from 02 to get:
•  05/04 A2, D3 *
•  07 D2 *
•  09/10 C2, D1 *
•  12 C1, B2 *

 07

 12

09 04

00 36

12 02

02 36 05

10

A

B

C

D

1 2 3
New wall seen here

David Hannaford - MINOS 2010 Slide 17

So how much faster is it?
By not flooding the whole maze. I calc 10 times faster
•  A full flood on a 16x16 maze is into 256 cells
•  We only re-flood if new wall blocks the optimum

route, so amount of re-flooding depends on how big
a detour the new wall causes.

•  Minimum value is flooding 3 steps
to get round the edge of the new wall
But can expect to flood out to 2 cells
per step, so 2x2x2 (8) cells re-flooded
Typical worst case we detour 8 steps which could re-

flood 2 to power 8 = 256 cells
If 85% time we re-flood 8 cells, 10% re flood 64 cells

and 5% re-flood 256 cells, new average = 26 cells

 03 02 36

01 36 02
}

David Hannaford - MINOS 2010 Slide 18

Summarising
•  44% of times we don’t need to do the flood at all

•  If we just flood out to the current mouse position
we save on average 50% of the time

•  If we only re-flood from the lowest adjacent cell
to the current one we save on average nearly
90% of the flood time

•  And it should work with variable distance flooding

David Hannaford - MINOS 2010 Slide 19

Am I doing it yet?

•  Have rewritten and am using the pointer lists
flood code with 16 bit cell values in current
mouse

•  Not flooding when visited cell before, but not
detecting yet all cases when don’t need to flood

•  Only flooding out to the current mouse position is
being used in the current mouse and seems to
work OK

•  Still need to code only re-flooding out from the
lowest adjacent cell to the current one

•  Haven’t tried variable distance flooding yet

David Hannaford - MINOS 2010 Slide 20

What else to speed it up?

•  Have changed the processor to a
dsPIC33FJ128MC804 running at 80mhz clock

•  This has 128k of memory, 16k of data, plus 2
PWMs and 2 encoder trackers

•  This does the full flood algorithm for an empty
16x16 maze in 15576 instructions

•  Full flood now only takes 0.3894 milliseconds
according to the MPLAB simulation

•  So re-flood now looking at around 40
microseconds if my calculations are correct

David Hannaford - MINOS 2010 Slide 21

Questions

