
David Hannaford - MINOS 2009 1

Flood algorithms

 The next best thing to Sat Nav for mice !!

TomTom

David Hannaford - MINOS 2009 2

Basics – the flood algorithm

•  Set all cells to maximum
flood distance and middle
square(s) =0. Start at centre

•  Find all squares adjacent to
ones just filled in & not
blocked by walls. Fill them in
with adjacent square value +
distance, if lower than
existing.

•  Repeat previous step until at
start

Set all cells to maximum
flood distance and middle
square(s) =0. Start at centre

12  12 12

12 00 12

12 12 12

12  12 12

Find all squares adjacent to
ones just filled in & not
blocked by walls. Fill them in
with adjacent square value +
distance, if lower than
existing.

 01

 01

02 02

02 02

03 03

03 03 04 Repeat previous step until at
start

David Hannaford - MINOS 2009 3

How to cross the maze using the
flood info

•  Set up at start & pointing North
•  Get flood no from current cell
•  Look for lowest flood no in

adjacent cells you can get to.
•  If several equal, choose the one

in same direction as going now
and save as the next cell to go to

•  Make this one the new current
cell and loop round from step 2
until until at end cell (middle
square if going to centre)

00

 01

 01

02 02

02 02

03 03

03 03 04

David Hannaford - MINOS 2009 4

When to finish searching

• After you get to the centre or
back to the start, if you run
through the flood derived route
and you have visited every cell in
it, there is no point in exploring
any more.

David Hannaford - MINOS 2009 5

Why I need a fast flood algorithm
•  While exploring, every time the

mouse enters a new cell it checks for
walls either side and ahead, then
records these in the maze array and
recalculates the full flood route

•  Need to complete this before mouse
needs to decide whether going ahead
or turning left or right in new cell

•  This means the mouse only explores
the potentially best routes, so it
should minimise the explore time

David Hannaford - MINOS 2009 6

Was it complicated to write?

• Clever but not a lot of code
• My current version written in 3 pages

of assembler with 117 lines of
instructions

• Flood routine available to view at:

http://www.davidhannaford.com/robots/flood.doc

David Hannaford - MINOS 2009 7

Code 1 - Setting up to start flood

• Set up a blank maze with known walls
around the edge

• Set all flood cells to value 255
• Point at the start and end cells
- Your code should be able to flood from

any cell to any other, so you can use it
to come back from the centre to start,
and test it on small mazes

• Put centre square number in pointer list

David Hannaford - MINOS 2009 8

Code 2 – Processing flood cells
•  See if any more cells to process with the

current flood no
•  If there are :–
•  check the 4 adjacent squares
 - if wall in the way ignore it
 - otherwise replace flood cell with current
flood no +1 unless cell has already got a
lower number in it
 - save cell location in pointer list

David Hannaford - MINOS 2009 9

Code 3 – Next flood no
•  If no more cells to process with the

current flood no
 - increase flood number by 1
 - save new end of pointer list
 - check if reached the start, so can stop
flooding

More examples of how this works in detail
from Peter Harrison in a few minutes

David Hannaford - MINOS 2009 10

So how fast is it?
•  Using 18F4525 PIC processor running at 32Mhz

clock - gives 8MIPS
•  On worst case of a 16x16 empty maze with no

walls seen yet, it takes 2.84 milliseconds. (approx
23,000 ins)

•  When all walls seen in 16x16 maze it takes 2.52
milliseconds.

•  Even if travelling at 2m/sec we would only go
5mm in this time

•  If pushed for time we only need to flood back to
point where mouse is, so average flood time can
be reduced to half that above. I.e. about 1.4msec

David Hannaford - MINOS 2009 11

Limitations of code

• Can’t handle the new 32x32 mazes
•  Just minimises no of squares

traversed (distance =1)
•  It doesn’t optimise routes using

information about number of
corners in route or exploiting
diagonals – I’m hoping to get info
on how to do this from some of the
other speakers ! – see next slide

David Hannaford - MINOS 2009 12

Variations on flood distance
between squares

•  2 equal routes blue,
I would like to know how to:
•  Penalise no of turns needed
•  Take account of diagonals being

shorter
•  Time rather than distance I.e.

can go faster if more straights in
a row

Should we do this when doing the
flood or when extracting route ?

00

 01

 03

02 02

02 04

03 01

03 05 04

00

 03 02 04

01

05

 yellow

David Hannaford - MINOS 2009 13

Questions

Then hand over to Peter Harrison

